Topic/Objective:	Name: Hannah Daley
Temperature	Class/Period: AOSC200
	Date: $9 / 24 / 19$

Essential Question:

How does temperature vary daily and seasonally? How does location impact temperature variation?

Questions:

The sun is highest in the sky (smallest SZA) at noon, but the hottest time of the day is in the afternoon. Why?

Notes:

Noon is when the sunlight is most intense, but the hottest time of the day is in the afternoon. This is because the atmosphere is heated from the Earth's surface which radiates heat and because the surface is still receiving sunlight, the amount it is releasing has not been optimized. You can think of it as a lag (see the figure below).

In technical terms (like something you may want to say on an exam), the hottest/coldest time of the day is when incoming energy= outgoing energy

Daily Temperat

The hottest time of the day is $\sim 3 / 4 \mathrm{pm}$ and the coldest is ~ 6 am (just after sunrise)
Air Temp data
Daily Mean temp (average of max and mins for the day or average of hourly temps) Daily temp range (Max-Min)
Monthly mean temp (average daily mean for the month)

	Annual mean temp (average of monthly means) Annual temp range (Max monthly mean- Min monthly mean)
Day vs night Time Temps	Day: After the sun rises, the sun heats the ground. The hot ground heats the air above it (Conduction). Night: As the sunsets, the ground cools by releasing/radiating its heat to space. The ground and the air just above the ground cools faster than the air above. When the temperature increases with height over the first meters above the surface, we call this a radiative inversion Daily Temperatures Daily temperature changes are largest near the surface
The role of clouds on Temperature	- Low level clouds are white and reflect incoming solar radiation. Therefore clouds in the day cool the maximum temperatures relative to no clouds - Low level clouds also absorb the outgoing IR radiation from the Earth and re-emit it back to Earth. Therefore clouds at night warm the minimum temp. - Key is that clouds reduce the daily temperature range. - Ex question: If you wanted warm evening and can only change the clouds, how would you make the clouds in the day and in the night? - Answer: I would want no clouds in the day so the Earth can absorb as much radiation as possible and I would want low level clouds to keep this heat from leaving at night.
Role of Latitude on Temperature	- Locations further from the equator (higher latitude) have a greater monthly temperature variation. - As you move away from the equator the intensity and duration of sun exposure changes more drastically throughout the year due to the Earth's axial tilt
Role of Surface type on Temperature (Specific Heat)	- Surfaces with a lot of vegetation tend to have less temperature variation due to plants evapotranspiration - Sand changes temperature very fast, so deserts have a large diurnal and seasonal variation. This is due to sands low specific heat: - Specific heat=energy required to heat 1 gram of substance 1 degree C warmer

Summary

The hottest time of the day is in the afternoon and the coldest time of the day is just after sunrise. Clouds, vegetation, and large bodies of water help to moderate temperatures, creating less seasonal and daily variation. Students should have a general understanding of specific heat and what high and low specific heat values mean in relation to temperature fluctuations.

